

# **Glint and Glare Analysis**

High River Energy Center Montgomery County, New York

### **FACILITY OPERATOR:**

High River Energy Center, LLC 700 Universe Boulevard Juno Beach, FL 33408

October 2019

# High River Energy Center Glint and Glare Analysis

### 1.0 GLARE

#### 1.1 INTRODUCTION

The Project is not anticipated to emit significant glare into the existing environment. Panels are designed to absorb sunlight and will be treated with anti-reflective coatings that will absorb and transmit light rather than reflect it. In general, solar panels are less reflective than window glass or water surfaces (NYSERDA, 2019) and any reflected light from solar panels will have a significantly lower intensity than glare from direct sunlight (Mass. Department of Energy Resources, 2015).

A Glint and Glare Analysis was performed in order to identify any potential impacts on nearby residences and roads. The analysis was prepared by Capitol Airspace Group utilizing the Solar Glare Hazard Analysis Tool (SGHAT). The results of the analysis conform to, and are in accordance with, the FAA's interim policy for Solar Energy System Projects on Federally Obligated Airports (78 FR 63271, October 2013), although this policy is only applicable for projects proposing to install solar panels at federally funded airports. SGHAT is a very conservative tool in that:

- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover, and geographic obstructions;
- The glare analysis assumes clear, sunny skies for 365 days of the year and does
  not take into account meteorological conditions that would nullify predicted glare
  such as clouds, rain or snow; and,
- Although only a portion of a modeled array may have the potential to produce glare, the results are provided as if the receptor has visibility of the entire array.

As noted above, the Project proposes to install fixed, tracker, or a combination of both types of racking systems. The glare analysis has been performed assuming an all-fixed layout in order to present results that do not understate potential glare visibility.

#### 1.2 REGULATORY THRESHOLDS

There are no applicable quantitative standards for glare, but scientific literature suggests that doubling the annual 30-hour shadow flicker standard (adopted by the Siting Board applicable to wind facilities) could be used as a benchmark, i.e. 60 hours per year (Pager Power, January 2017).

#### 1.3 GLARE ANALYSIS

Based on the viewshed analysis included as Figure 4 in Attachment 2 of the Visual Impact Assessment (VIA), non-participating residential receptors and points along local

roadways (both referred to herein as "observation points") identified as having visibility of the Project were assessed for glare. The overall Project array was divided into nine separate areas identified as arrays A1 through A7 and P1, P2. An additional viewshed analysis was then performed to determine which of these separate array areas are visible from each observation point with predicted visibility. Proposed landscaping was not accounted for in the viewshed analysis and, therefore, the predicted visibility is overestimated.

For residential observation points, the analysis conservatively assumed a second-story observer height of 16 feet. Twenty-five residential observation points were assessed. Similarly, for road observation points, a truck observer height of eight feet was assumed. Twelve roadway observation points were assessed.

The glare analysis was then conducted to determine the potential duration of glare that could occur at each observation point and the portion of each array area determined to have a potential to result in glare. The results of this analysis are included in Appendix 24-2. While the results indicate there is the potential for glare at a number of observation points, further analysis was required to determine if the portion of each array area determined to have the potential to create glare at an observation point is actually visible at each observation point. As noted in Section 7.1.2 in the VIA, because an area may show visibility in the viewshed analysis, it does not mean the entirety of the array area will be seen. The viewshed analysis depicts areas of visibility over a regional area. It can only predict geographically on a map, areas where some part of the solar panels might be seen. It does not and cannot determine if it is seeing a full on view or a partial view. Additionally, if visibility is occurring in an area, it may sometimes only be a result of glimpsing a portion of the Project over undulating treetops between gaps of trees, or visibility of the tops of panels and not a full view.

Therefore, for observation points that have the potential for greater than 30 hours of glare annually (eight residences and two road points), but less than 60 hours annually, a separate line of sight analysis was completed to confirm visibility of the array. Table 1 below provides a summary of this analysis.

**Table 1. Glare Analysis Results** 

| Observation<br>Point | Туре      | Array(s)<br>Assessed | Potential for<br>Glare >30<br>Hours<br>Annually | Line of Sight<br>Analysis Results                                                              | Predicted Glare<br>Duration                                                                                                                      |
|----------------------|-----------|----------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| OP-2                 | Residence | A-1                  | Yes                                             | Existing vegetation and proposed landscaping block visibility                                  | 0 hours                                                                                                                                          |
| OP-10                | Residence | A-2                  | Yes                                             | Confirmed<br>visibility                                                                        | 42.48 hours annually possible; additional landscape buffer to south of Array 2 should help minimize potential glare duration                     |
| OP-11                | Residence | A-2 & A-3            | Yes                                             | A-2: Confirmed visibility;  A-3: Existing vegetation and proposed landscaping block visibility | A-2: 38.72 hours annually possible; additional landscape buffer to south of Array 2 should help minimize potential glare duration;  A-3: 0 hours |
| OP-14                | Residence | P-1                  | Yes                                             | Proposed<br>landscaping will<br>block array<br>visibility                                      | 0 hours                                                                                                                                          |

| Observation<br>Point | Туре      | Array(s)<br>Assessed | Potential for<br>Glare >30<br>Hours<br>Annually | Line of Sight<br>Analysis Results                                                                      | Predicted Glare<br>Duration  |
|----------------------|-----------|----------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|
| OP-16                | Residence | P-1                  | Yes                                             | Proposed<br>landscaping will<br>block array<br>visibility                                              | 0 hours                      |
| OP-29                | Residence | A-5                  | Yes                                             | Proposed<br>landscaping will<br>block array<br>visibility                                              | 0 hours                      |
| OP-33                | Residence | A-2                  | Yes                                             | Existing vegetation blocks visibility                                                                  | 0 hours                      |
| OP-51                | Residence | P-1 & P-2            | Yes                                             | P-1: Existing vegetation blocks visibility;  P-2: Existing hedgerow vegetation blocks array visibility | P-1: 0 hours<br>P-2: 0 hours |
| OP-66                | Road      | A-2                  | Yes                                             | Existing vegetation blocks visibility                                                                  | 0 hours                      |
| OP-74                | Road      | A-2                  | Yes                                             | Existing vegetation and proposed landscaping block visibility                                          | 0 hours                      |

As indicated in Table 8 above, for those observation points with the potential for greater than 30 hours of glare annually, but less than 60 hours annually, all but two are confirmed to have existing vegetation and/or proposed landscaping that will mitigate the potential for glare. Two additional locations (OP-10 & OP-11) can likely be mitigated with the addition of a landscape buffer along the southern perimeter of array A-2.

Of the remaining 17 residential observation points not included in Table 8, five have no potential for glare and the remaining 12 observation points have the potential for glare less than 30 hours annually with the maximum duration of potential glare ranging from five to 20 minutes per day during select summer months. For the remaining 10 road observation points, six have no potential for glare and the remaining four have the potential for glare less than 30 hours annually with the maximum duration ranging from one to fifteen minutes per day during select summer months. Similar to the observation points listed in Table 8, this analysis is very conservative in that the portions of the arrays that have the potential to create glare may not be visible. Additionally, proposed landscaping is not accounted for in the viewshed analysis and, as noted above, the analysis assumes that the sun is shining 365 days per year, which means days with no glare (cloudy or rainy days) are most likely contributing to the predicted glare duration. Similarly, buildings and existing tree cover may block otherwise predicted glare duration. Proposed landscape areas in combination with existing vegetation along the perimeter of the site will further reduce the potential from glare associated with the proposed arrays.

Proposed mitigation measures in place for observation points with less than 30 hours of potential glare annually include:

- Landscaping along southernmost portion of Array A-2 and A-3
- Special Planting Area proposed along northern and western portions of Array A-7
- Landscaping along perimeter of Array P-1
- Landscaping along northern perimeter of Array A-5

Based on the results of the analysis and the proposed mitigation measures, no significant impacts from glare are expected as a result of the Project.

Refer to Attachment 1 to see the SGHAT data sheets prepared by Capitol Airspace Group.

# **Attachment 1**

SGHAT data sheets prepared by Capitol Airspace Group



### **GlareGauge Glare Analysis Results**

### Site Configuration: Array 1 Fixed 9Oct19

Project site configuration details and results.



Created Oct. 9, 2019 1:11 p.m.
Updated Oct. 9, 2019 2:26 p.m.
DNI varies and peaks at 1,000.0 W/m^2
Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31860.5043

### Summary of Results Glare with potential for temporary after-image predicted

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| A1      | 25.0 | 180.0       | 337           | 5,240          | -               |

### **Component Data**

PV Array(s)

Warning: This PV array encompasses a large surface area. This may reduce the accuracy of certain calculations if receptors are near the array. These calculations utilize the PV footprint centroid, rather than the glare-spot location, due to analysis method limitations. Additional analyses of array sub-sections may provide more information on expected glare. (Note that the subtended source angle is limited by the footprint surface

area.)

Name: A1 Axis tracking: Fixed (no rotation) Tilt: 25.0 deg Orientation: 180.0 deg Rated power: -Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad



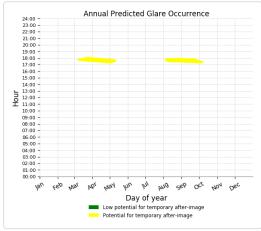
| Vertex | Latitude  | Longitude  | Ground elevation | Height above ground | Total<br>elevation |
|--------|-----------|------------|------------------|---------------------|--------------------|
|        | deg       | deg        | ft               | ft                  | ft                 |
| 1      | 42.908231 | -74.152762 | 540.64           | 10.00               | 550.64             |
| 2      | 42.908229 | -74.151962 | 550.66           | 10.00               | 560.66             |
| 3      | 42.905244 | -74.148952 | 573.85           | 10.00               | 583.85             |
| 4      | 42.904425 | -74.150796 | 569.90           | 10.00               | 579.90             |
| 5      | 42.902683 | -74.150826 | 608.30           | 10.00               | 618.30             |
| 6      | 42.902156 | -74.150652 | 605.26           | 10.00               | 615.26             |
| 7      | 42.902153 | -74.149516 | 602.13           | 10.00               | 612.14             |
| 8      | 42.901968 | -74.149242 | 597.47           | 10.00               | 607.48             |
| 9      | 42.901759 | -74.149064 | 583.44           | 10.00               | 593.44             |
| 10     | 42.901386 | -74.149243 | 587.17           | 10.00               | 597.17             |
| 11     | 42.900814 | -74.150343 | 589.41           | 10.00               | 599.41             |
| 12     | 42.900815 | -74.150803 | 598.80           | 10.00               | 608.80             |
| 13     | 42.901525 | -74.151659 | 603.00           | 10.00               | 613.00             |
| 14     | 42.902014 | -74.151940 | 602.25           | 10.00               | 612.25             |
| 15     | 42.901242 | -74.153212 | 601.54           | 10.00               | 611.54             |
| 16     | 42.900318 | -74.152601 | 601.38           | 10.00               | 611.38             |
| 17     | 42.900317 | -74.152273 | 600.43           | 10.00               | 610.43             |
| 18     | 42.899758 | -74.152277 | 599.35           | 10.00               | 609.35             |
| 19     | 42.899509 | -74.152900 | 599.46           | 10.00               | 609.46             |
| 20     | 42.899426 | -74.154883 | 604.20           | 10.00               | 614.20             |
| 21     | 42.897906 | -74.157847 | 614.90           | 10.00               | 624.90             |
| 22     | 42.898075 | -74.158320 | 615.79           | 10.00               | 625.80             |
| 23     | 42.899035 | -74.159268 | 612.28           | 10.00               | 622.28             |
| 24     | 42.899699 | -74.159264 | 609.12           | 10.00               | 619.12             |
| 25     | 42.900243 | -74.156852 | 605.49           | 10.00               | 615.49             |
| 26     | 42.900626 | -74.156854 | 607.96           | 10.00               | 617.96             |
| 27     | 42.901587 | -74.157821 | 601.85           | 10.00               | 611.85             |
| 28     | 42.901989 | -74.157818 | 594.76           | 10.00               | 604.76             |
| 29     | 42.902303 | -74.157181 | 594.13           | 10.00               | 604.13             |
| 30     | 42.902946 | -74.157178 | 573.91           | 10.00               | 583.91             |
| 31     | 42.903340 | -74.156804 | 566.19           | 10.00               | 576.19             |
| 32     | 42.903338 | -74.155932 | 574.30           | 10.00               | 584.30             |
| 33     | 42.902215 | -74.154962 | 586.54           | 10.00               | 596.54             |
| 34     | 42.901128 | -74.154963 | 598.70           | 10.00               | 608.70             |
| 35     | 42.901551 | -74.154062 | 593.98           | 10.00               | 603.98             |
| 36     | 42.902316 | -74.154386 | 584.15           | 10.00               | 594.15             |
| 37     | 42.903093 | -74.154329 | 583.59           | 10.00               | 593.59             |
| 38     | 42.903919 | -74.154918 | 555.88           | 10.00               | 565.88             |
| 39     | 42.904121 | -74.154904 | 549.54           | 10.00               | 559.54             |
| 40     | 42.905104 | -74.153258 | 541.20           | 10.00               | 551.20             |
| 41     | 42.906723 | -74.152771 | 539.10           | 10.00               | 549.10             |
|        | .2.000720 | . 4.102771 | 000.10           | 10.00               | 0-10.10            |

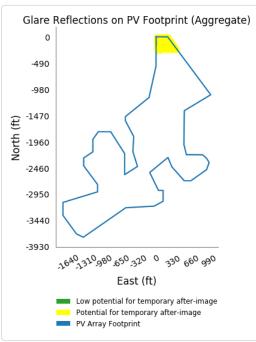
X

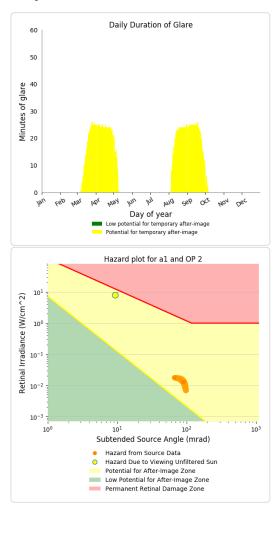
### **Discrete Observation Receptors**

| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 2   | 42.907694 | -74.149199 | 572.18           | 16.00               | 588.18          |
| OP 7   | 42.895080 | -74.138024 | 656.83           | 16.00               | 672.83          |
| OP 10  | 42.896538 | -74.135272 | 617.61           | 16.00               | 633.61          |
| OP 11  | 42.896899 | -74.134649 | 608.31           | 16.00               | 624.31          |
| OP 21  | 42.893908 | -74.163184 | 668.51           | 16.00               | 684.51          |
| OP 24  | 42.889587 | -74.149577 | 803.12           | 16.00               | 819.12          |
| OP 28  | 42.889113 | -74.150335 | 815.53           | 16.00               | 831.53          |
| OP 40  | 42.894156 | -74.117976 | 629.29           | 16.00               | 645.29          |
| OP 43  | 42.893775 | -74.117145 | 644.10           | 16.00               | 660.10          |
| OP 44  | 42.889212 | -74.119802 | 856.47           | 16.00               | 872.47          |
| OP 47  | 42.889832 | -74.151972 | 774.94           | 16.00               | 790.94          |
| OP 66  | 42.894854 | -74.164041 | 650.56           | 8.00                | 658.56          |
| OP 76  | 42.890096 | -74.142190 | 830.22           | 8.00                | 838.22          |

# **PV Array Results**

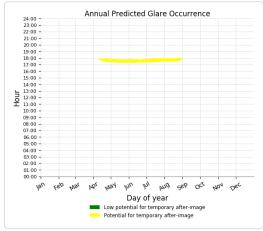

### A1 potential temporary after-image

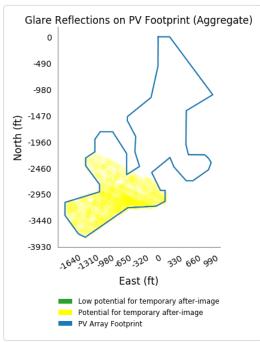

Warning: This PV array encompasses a large surface area. This may reduce the accuracy of certain calculations if receptors are near the array. These calculations utilize the PV footprint centroid, rather than the glare-spot location, due to analysis method limitations. Additional analyses of array sub-sections may provide more information on expected glare. (Note that the subtended source angle is limited by the footprint surface area.)

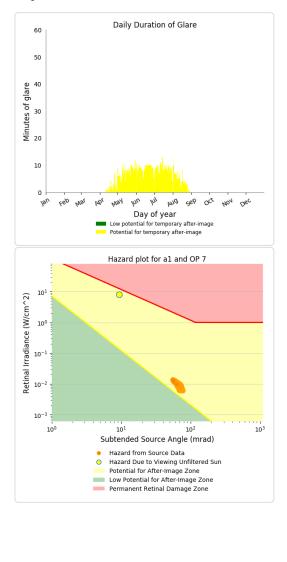

| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 2  | 0                 | 2549               |
| OP: OP 7  | 0                 | 974                |
| OP: OP 10 | 0                 | 184                |
| OP: OP 11 | 6                 | 480                |
| OP: OP 21 | 0                 | 0                  |
| OP: OP 24 | 0                 | 0                  |
| OP: OP 28 | 0                 | 0                  |
| OP: OP 40 | 4                 | 101                |
| OP: OP 43 | 1                 | 94                 |
| OP: OP 44 | 326               | 858                |
| OP: OP 47 | 0                 | 0                  |
| OP: OP 66 | 0                 | 0                  |
| OP: OP 76 | 0                 | 0                  |

### A1 - OP Receptor (OP 2)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,549 minutes of "yellow" glare with potential to cause temporary after-image.

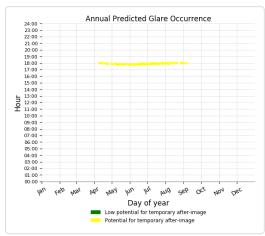


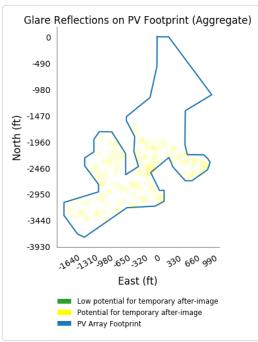



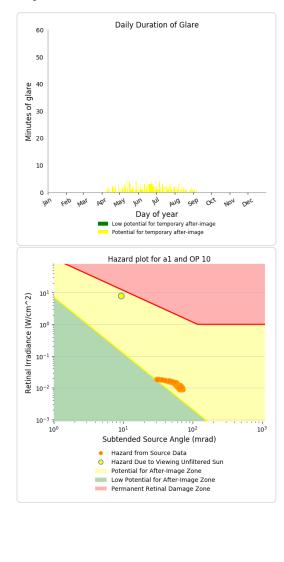




### A1 - OP Receptor (OP 7)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 974 minutes of "yellow" glare with potential to cause temporary after-image.



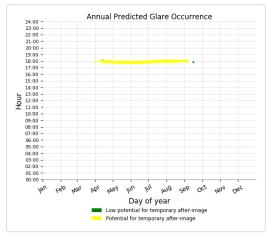



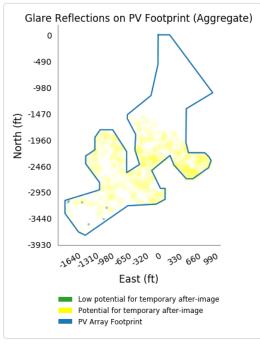



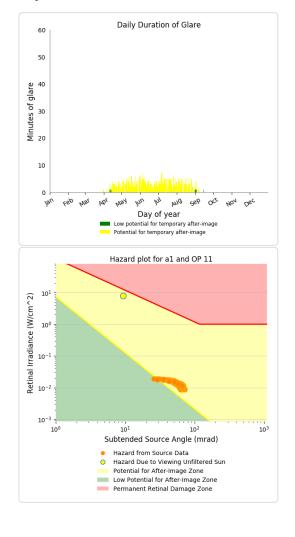

### A1 - OP Receptor (OP 10)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 184 minutes of "yellow" glare with potential to cause temporary after-image.







#### A1 - OP Receptor (OP 11)

PV array is expected to produce the following glare for receptors at this location:

- 6 minutes of "green" glare with low potential to cause temporary after-image.
- 480 minutes of "yellow" glare with potential to cause temporary after-image.



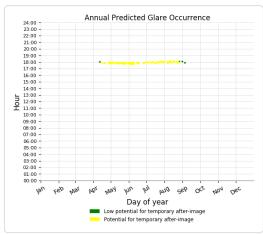


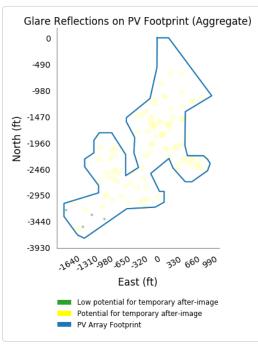


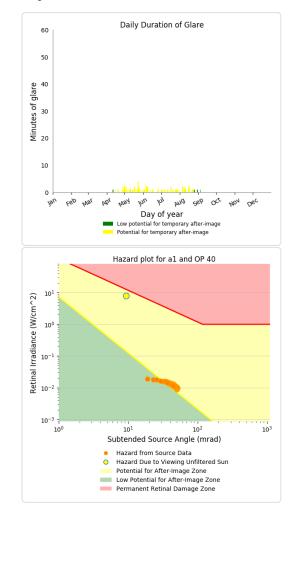
#### A1 - OP Receptor (OP 21)

No glare found

### A1 - OP Receptor (OP 24)

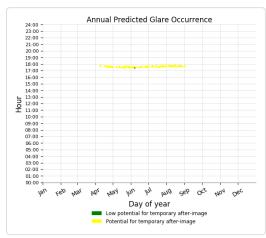

No glare found

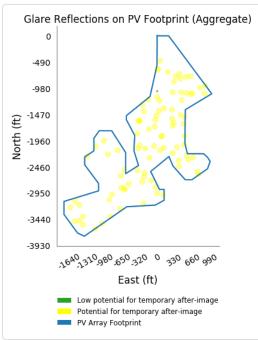

#### A1 - OP Receptor (OP 28)

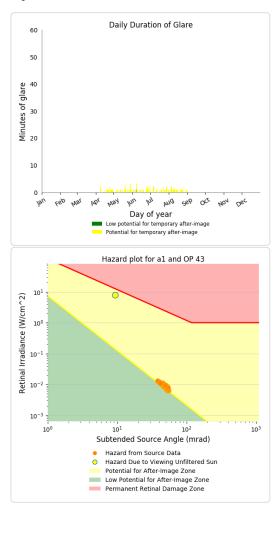

No glare found

### A1 - OP Receptor (OP 40)

- 4 minutes of "green" glare with low potential to cause temporary after-image.
- 101 minutes of "yellow" glare with potential to cause temporary after-image.



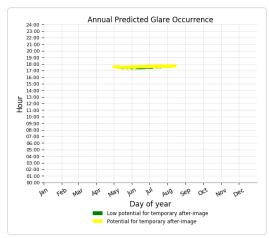



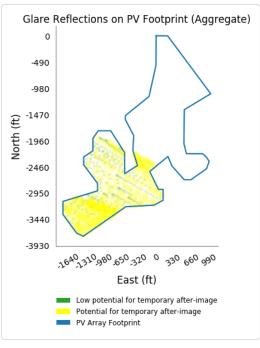



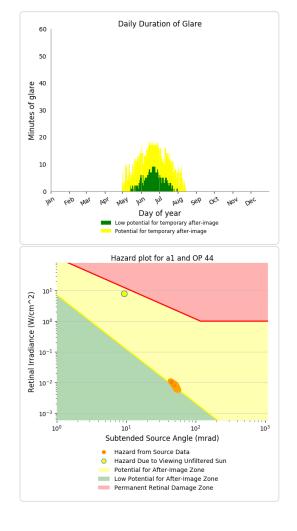

### A1 - OP Receptor (OP 43)

- 1 minutes of "green" glare with low potential to cause temporary after-image.
- 94 minutes of "yellow" glare with potential to cause temporary after-image.







#### A1 - OP Receptor (OP 44)

PV array is expected to produce the following glare for receptors at this location:

- 326 minutes of "green" glare with low potential to cause temporary after-image.
- 858 minutes of "yellow" glare with potential to cause temporary after-image.







#### A1 - OP Receptor (OP 47)

No glare found

### A1 - OP Receptor (OP 66)

No glare found

#### A1 - OP Receptor (OP 76)

No glare found

### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass ε continuous, not discrete, spectrum.
- · Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.



### **GlareGauge Glare Analysis Results**

# Site Configuration: Array 2 Fixed 9Oct19

Project site configuration details and results.



Created Oct. 9, 2019 1:13 p.m.
Updated Oct. 9, 2019 2:34 p.m.
DNI varies and peaks at 1,000.0 W/m^2
Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31861.5043

### Summary of Results Glare with potential for temporary after-image predicted

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| A2      | 25.0 | 180.0       | 25            | 18,867         | -               |

### **Component Data**

PV Array(s)

**Warning:** This PV array encompasses a large surface area. This may reduce the accuracy of certain calculations if receptors are near the array. These calculations utilize the PV footprint centroid, rather than the glare-spot location, due to analysis method limitations. Additional analyses of array sub-sections may provide more information on expected glare. (Note that the subtended source angle is limited by the footprint surface area.)

×

Name: A2 Axis tracking: Fixed (no rotation) Tilt: 25.0 deg Orientation: 180.0 deg Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

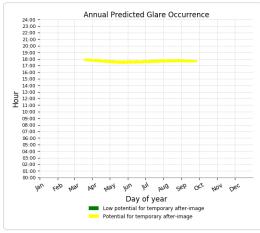


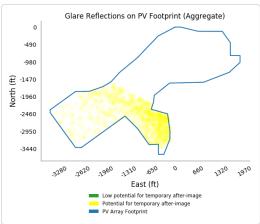
| Vertex | Latitude  | Longitude  | Ground elevation | Height above ground | Total elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| 1      | 42.904016 | -74.144397 | 592.43           | 10.00               | 602.43          |
| 2      | 42.904013 | -74.143792 | 599.38           | 10.00               | 609.38          |
| 3      | 42.903688 | -74.141939 | 602.55           | 10.00               | 612.55          |
| 4      | 42.903680 | -74.139401 | 602.07           | 10.00               | 612.07          |
| 5      | 42.902808 | -74.138549 | 602.57           | 10.00               | 612.57          |
| 6      | 42.901798 | -74.138556 | 576.57           | 10.00               | 586.57          |
| 7      | 42.901795 | -74.137520 | 545.67           | 10.00               | 555.67          |
| 8      | 42.901267 | -74.137523 | 541.10           | 10.00               | 551.10          |
| 9      | 42.900491 | -74.138671 | 561.25           | 10.00               | 571.25          |
| 10     | 42.899719 | -74.141395 | 592.06           | 10.00               | 602.06          |
| 11     | 42.899659 | -74.144970 | 596.01           | 10.00               | 606.01          |
| 12     | 42.898701 | -74.146597 | 602.75           | 10.00               | 612.75          |
| 13     | 42.898170 | -74.146673 | 609.24           | 10.00               | 619.24          |
| 14     | 42.897621 | -74.146920 | 617.61           | 10.00               | 627.61          |
| 15     | 42.897259 | -74.145188 | 621.55           | 10.00               | 631.55          |
| 16     | 42.895944 | -74.144939 | 643.20           | 10.00               | 653.20          |
| 17     | 42.895304 | -74.144943 | 657.69           | 10.00               | 667.69          |
| 18     | 42.894109 | -74.145582 | 682.85           | 10.00               | 692.85          |
| 19     | 42.894110 | -74.146164 | 686.27           | 10.00               | 696.27          |
| 20     | 42.894896 | -74.146160 | 669.02           | 10.00               | 679.02          |
| 21     | 42.894875 | -74.147154 | 673.44           | 10.00               | 683.44          |
| 22     | 42.896118 | -74.148365 | 643.74           | 10.00               | 653.74          |
| 23     | 42.897087 | -74.149698 | 622.69           | 10.00               | 632.69          |
| 24     | 42.894643 | -74.154301 | 657.35           | 10.00               | 667.35          |
| 25     | 42.894645 | -74.154931 | 659.99           | 10.00               | 669.99          |
| 26     | 42.897353 | -74.157607 | 617.43           | 10.00               | 627.43          |
| 27     | 42.897577 | -74.157605 | 616.69           | 10.00               | 626.69          |
| 28     | 42.899004 | -74.154922 | 606.15           | 10.00               | 616.15          |
| 29     | 42.899022 | -74.153422 | 599.83           | 10.00               | 609.84          |
| 30     | 42.899388 | -74.152010 | 597.63           | 10.00               | 607.63          |
| 31     | 42.899751 | -74.151178 | 595.73           | 10.00               | 605.73          |
| 32     | 42.900490 | -74.150258 | 589.99           | 10.00               | 599.99          |
| 33     | 42.901624 | -74.148391 | 583.92           | 10.00               | 593.92          |
| 34     | 42.903321 | -74.146189 | 595.96           | 10.00               | 605.96          |

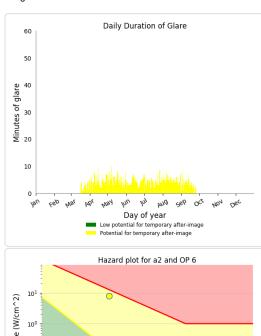
### **Discrete Observation Receptors**

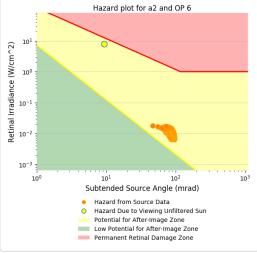
| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 6   | 42.895017 | -74.138592 | 654.09           | 16.00               | 670.09          |
| OP 7   | 42.895080 | -74.138024 | 656.83           | 16.00               | 672.83          |
| OP 8   | 42.895209 | -74.137643 | 652.44           | 16.00               | 668.44          |
| OP 9   | 42.895449 | -74.137219 | 645.32           | 16.00               | 661.32          |
| OP 10  | 42.896538 | -74.135272 | 617.61           | 16.00               | 633.61          |
| OP 11  | 42.896899 | -74.134649 | 608.31           | 16.00               | 624.31          |
| OP 24  | 42.889587 | -74.149577 | 803.12           | 16.00               | 819.12          |
| OP 28  | 42.889113 | -74.150335 | 815.53           | 16.00               | 831.53          |
| OP 29  | 42.888530 | -74.149500 | 829.82           | 16.00               | 845.82          |
| OP 33  | 42.895612 | -74.128218 | 603.88           | 16.00               | 619.88          |
| OP 40  | 42.894156 | -74.117976 | 629.29           | 16.00               | 645.29          |
| OP 43  | 42.893775 | -74.117145 | 644.10           | 16.00               | 660.10          |
| OP 44  | 42.889212 | -74.119802 | 856.47           | 16.00               | 872.47          |
| OP 47  | 42.889832 | -74.151972 | 774.94           | 16.00               | 790.94          |
| OP 66  | 42.894854 | -74.164041 | 650.56           | 8.00                | 658.56          |
| OP 72  | 42.889264 | -74.149082 | 812.51           | 8.00                | 820.51          |
| OP 74  | 42.895349 | -74.135464 | 631.08           | 8.00                | 639.08          |
| OP 76  | 42.890096 | -74.142190 | 830.22           | 8.00                | 838.22          |

# **PV Array Results**


### A2 potential temporary after-image

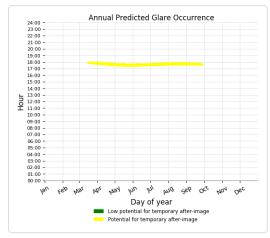

Warning: This PV array encompasses a large surface area. This may reduce the accuracy of certain calculations if receptors are near the array. These calculations utilize the PV footprint centroid, rather than the glare-spot location, due to analysis method limitations. Additional analyses of array sub-sections may provide more information on expected glare. (Note that the subtended source angle is limited by the footprint surface area.)

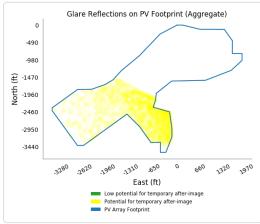

| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 6  | 0                 | 846                |
| OP: OP 7  | 0                 | 1503               |
| OP: OP 8  | 0                 | 606                |
| OP: OP 9  | 0                 | 891                |
| OP: OP 10 | 0                 | 2115               |
| OP: OP 11 | 0                 | 2323               |
| OP: OP 24 | 0                 | 0                  |
| OP: OP 28 | 0                 | 0                  |
| OP: OP 29 | 0                 | 0                  |
| OP: OP 33 | 0                 | 2230               |
| OP: OP 40 | 12                | 1040               |
| OP: OP 43 | 13                | 742                |
| OP: OP 44 | 0                 | 2202               |
| OP: OP 47 | 0                 | 0                  |
| OP: OP 66 | 0                 | 2011               |
| OP: OP 72 | 0                 | 0                  |
| OP: OP 74 | 0                 | 2073               |
| OP: OP 76 | 0                 | 285                |

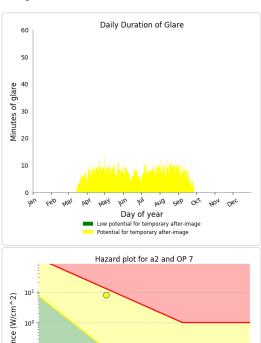

### A2 - OP Receptor (OP 6)

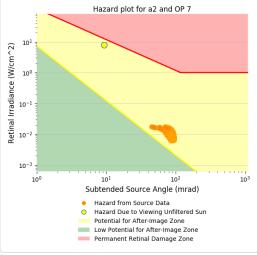
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 846 minutes of "yellow" glare with potential to cause temporary after-image.





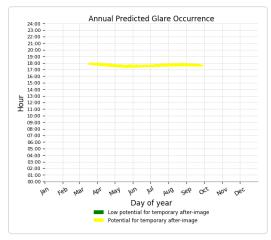



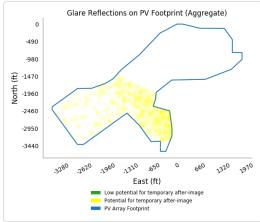


### A2 - OP Receptor (OP 7)

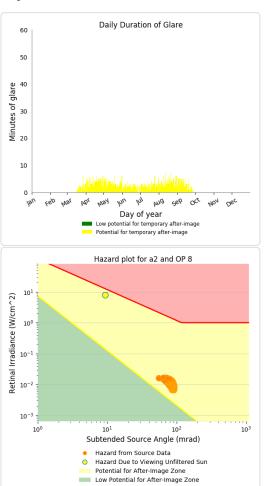
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 1,503 minutes of "yellow" glare with potential to cause temporary after-image.









### A2 - OP Receptor (OP 8)

PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 606 minutes of "yellow" glare with potential to cause temporary after-image.

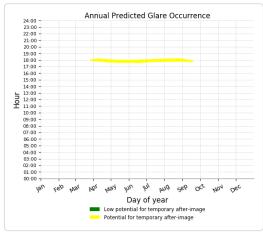


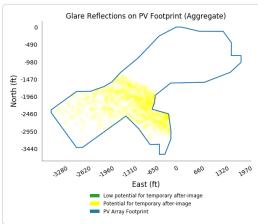




Permanent Retinal Damage Zone

100

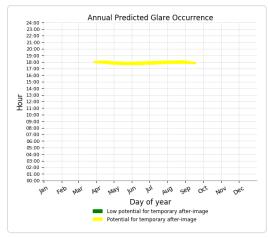

10<sup>1</sup>

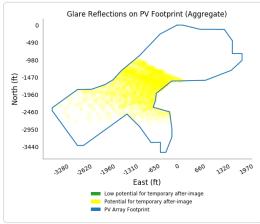

Subtended Source Angle (mrad)

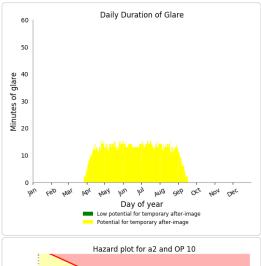
Hazard from Source Data
Hazard Due to Viewing Unfiltered Sun
Potential for After-Image Zone
Low Potential for After-Image Zone
Permanent Retinal Damage Zone

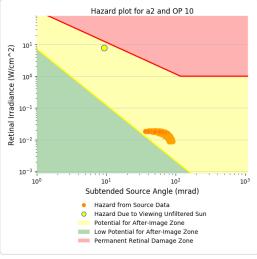
### A2 - OP Receptor (OP 9)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 891 minutes of "yellow" glare with potential to cause temporary after-image.



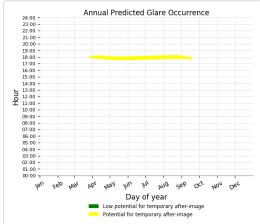



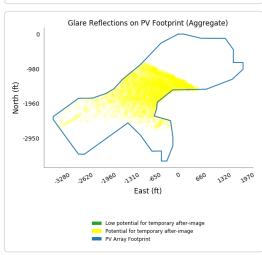


### A2 - OP Receptor (OP 10)

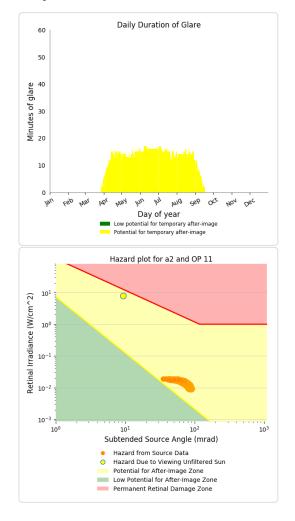
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,115 minutes of "yellow" glare with potential to cause temporary after-image.









### A2 - OP Receptor (OP 11)

PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,323 minutes of "yellow" glare with potential to cause temporary after-image.



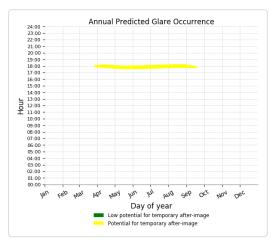


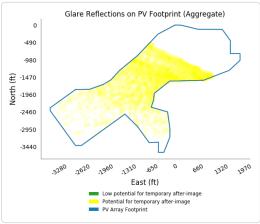


### A2 - OP Receptor (OP 24)

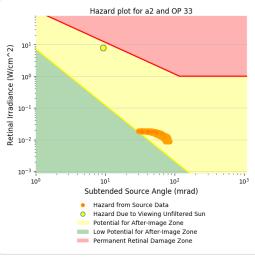
No glare found

### A2 - OP Receptor (OP 28)


No glare found

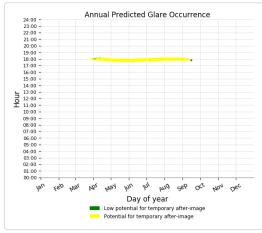

### A2 - OP Receptor (OP 29)

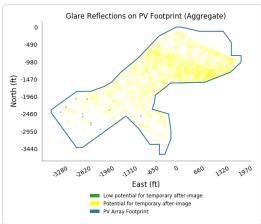
No glare found

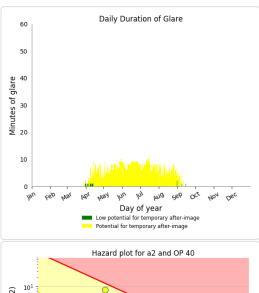

### A2 - OP Receptor (OP 33)

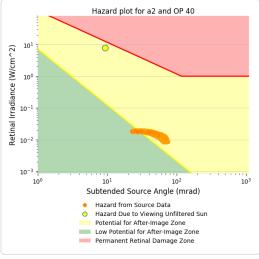
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,230 minutes of "yellow" glare with potential to cause temporary after-image.





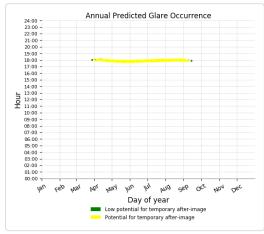



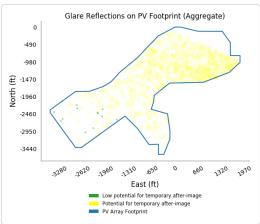



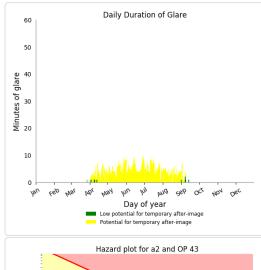


### A2 - OP Receptor (OP 40)

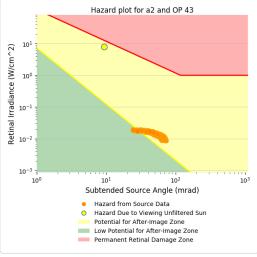
- 12 minutes of "green" glare with low potential to cause temporary after-image.
- 1,040 minutes of "yellow" glare with potential to cause temporary after-image.





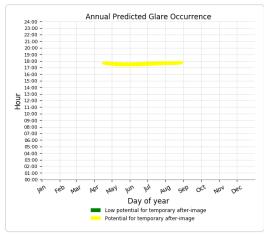



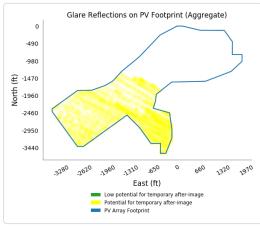


### A2 - OP Receptor (OP 43)

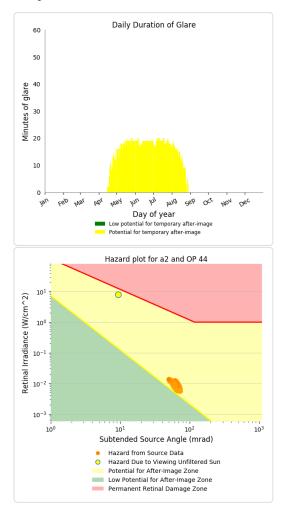
- 13 minutes of "green" glare with low potential to cause temporary after-image.
- 742 minutes of "yellow" glare with potential to cause temporary after-image.









### A2 - OP Receptor (OP 44)

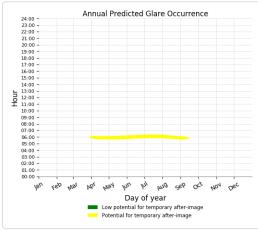
PV array is expected to produce the following glare for receptors at this location:

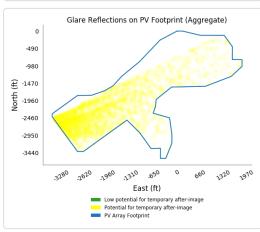
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,202 minutes of "yellow" glare with potential to cause temporary after-image.

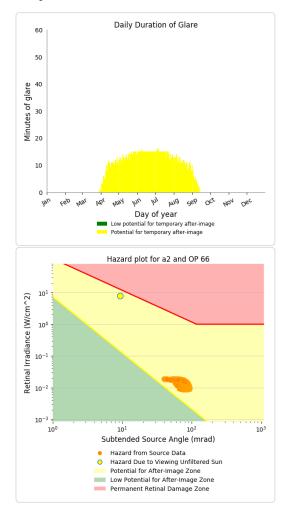







### A2 - OP Receptor (OP 47)


No glare found

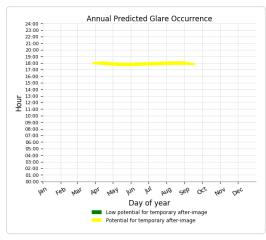

### A2 - OP Receptor (OP 66)

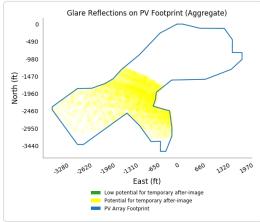
PV array is expected to produce the following glare for receptors at this location:

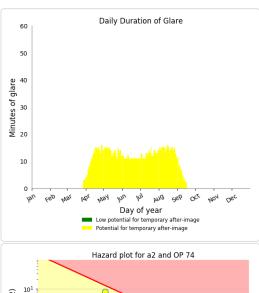
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,011 minutes of "yellow" glare with potential to cause temporary after-image.

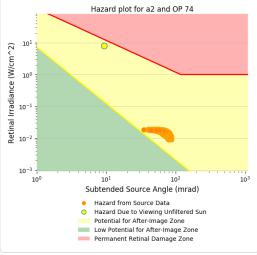






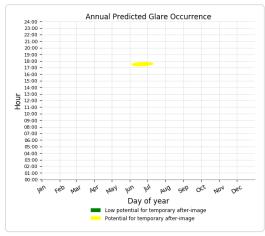


### A2 - OP Receptor (OP 72)

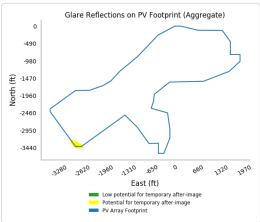

No glare found

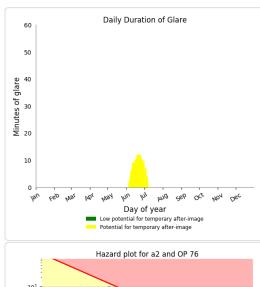

### A2 - OP Receptor (OP 74)

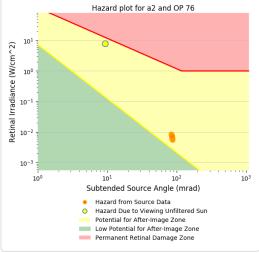
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,073 minutes of "yellow" glare with potential to cause temporary after-image.







### A2 - OP Receptor (OP 76)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 285 minutes of "yellow" glare with potential to cause temporary after-image.









#### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections
  will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size.
  Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous
  point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass acontinuous, not discrete, spectrum.
- · Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.



### **GlareGauge Glare Analysis Results**

## Site Configuration: Array 3 Fixed 9Oct19

Project site configuration details and results.



Created Oct. 9, 2019 1:13 p.m.
Updated Oct. 9, 2019 3:16 p.m.
DNI varies and peaks at 1,000.0 W/m^2
Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31862.5043

### Summary of Results Glare with potential for temporary after-image predicted

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| A3      | 25.0 | 180.0       | 504           | 3,015          | -               |

### **Component Data**

#### PV Array(s)

Name: A3
Axis tracking: Fixed (no rotation)
Tilt: 25.0 deg
Orientation: 180.0 deg
Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad



| Vertex | Latitude  | Longitude  | Ground elevation | Height above ground | Total elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| 1      | 42.899311 | -74.143635 | 590.67           | 10.00               | 600.67          |
| 2      | 42.899256 | -74.142413 | 589.34           | 10.00               | 599.34          |
| 3      | 42.899060 | -74.141895 | 588.50           | 10.00               | 598.50          |
| 4      | 42.898574 | -74.141424 | 594.15           | 10.00               | 604.15          |
| 5      | 42.898157 | -74.141427 | 597.87           | 10.00               | 607.87          |
| 6      | 42.897877 | -74.142113 | 598.52           | 10.00               | 608.52          |
| 7      | 42.897527 | -74.142115 | 605.67           | 10.00               | 615.67          |
| 8      | 42.897238 | -74.143709 | 618.23           | 10.00               | 628.23          |
| 9      | 42.897215 | -74.144272 | 620.71           | 10.00               | 630.71          |
| 10     | 42.897452 | -74.144482 | 615.29           | 10.00               | 625.29          |
| 11     | 42.898148 | -74.144487 | 603.91           | 10.00               | 613.91          |
| 12     | 42.899110 | -74.144177 | 593.52           | 10.00               | 603.52          |

### **Discrete Observation Receptors**

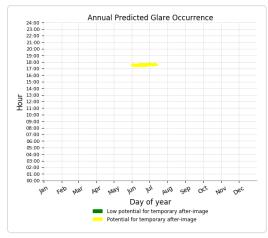
| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 2   | 42.907694 | -74.149199 | 572.18           | 16.00               | 588.18          |
| OP 6   | 42.895017 | -74.138592 | 654.09           | 16.00               | 670.09          |
| OP 7   | 42.895080 | -74.138024 | 656.83           | 16.00               | 672.83          |
| OP 8   | 42.895209 | -74.137643 | 652.44           | 16.00               | 668.44          |
| OP 11  | 42.896899 | -74.134649 | 608.31           | 16.00               | 624.31          |
| OP 24  | 42.889587 | -74.149577 | 803.12           | 16.00               | 819.12          |
| OP 44  | 42.889212 | -74.119802 | 856.47           | 16.00               | 872.47          |
| OP 73  | 42.892947 | -74.141994 | 719.25           | 8.00                | 727.25          |
| OP 76  | 42.890096 | -74.142190 | 830.22           | 8.00                | 838.22          |

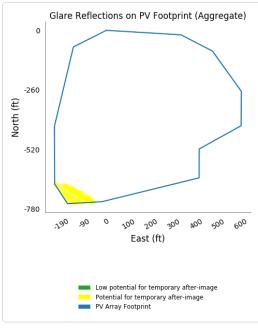
# **PV Array Results**

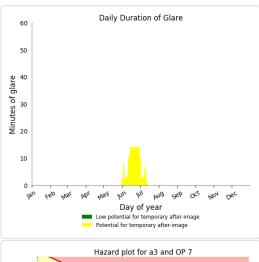
### $\pmb{A3} \quad \text{potential temporary after-image}$

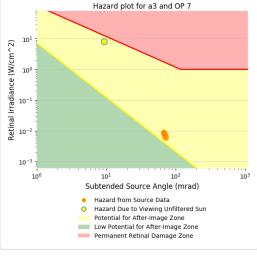
| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 2  | 0                 | 0                  |
| OP: OP 6  | 0                 | 0                  |
| OP: OP 7  | 0                 | 369                |
| OP: OP 8  | 0                 | 844                |
| OP: OP 11 | 10                | 1802               |
| OP: OP 24 | 0                 | 0                  |
| OP: OP 44 | 494               | 0                  |
| OP: OP 73 | 0                 | 0                  |
| OP: OP 76 | 0                 | 0                  |

### A3 - OP Receptor (OP 2)


No glare found

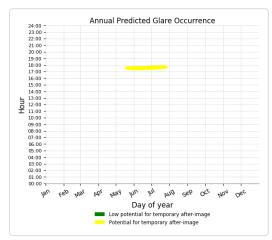

### A3 - OP Receptor (OP 6)

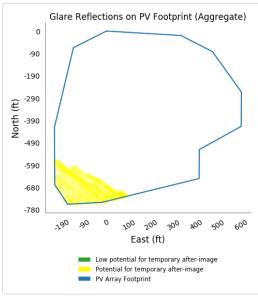

No glare found

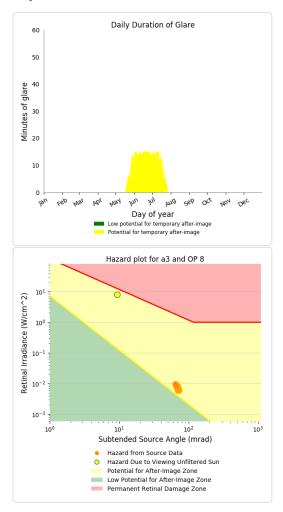

#### A3 - OP Receptor (OP 7)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 369 minutes of "yellow" glare with potential to cause temporary after-image.





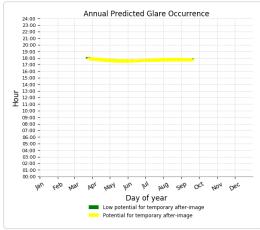



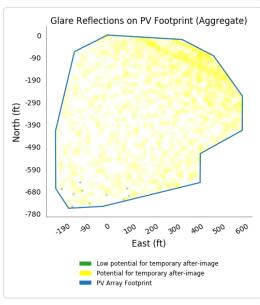




#### A3 - OP Receptor (OP 8)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 844 minutes of "yellow" glare with potential to cause temporary after-image.







#### A3 - OP Receptor (OP 11)

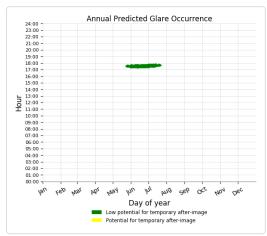
PV array is expected to produce the following glare for receptors at this location:

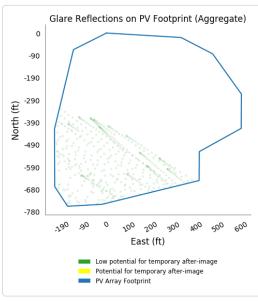
- 10 minutes of "green" glare with low potential to cause temporary after-image.
- 1,802 minutes of "yellow" glare with potential to cause temporary after-image.

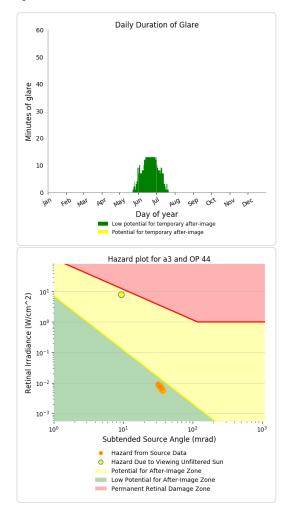







#### A3 - OP Receptor (OP 24)


No glare found


#### A3 - OP Receptor (OP 44)

PV array is expected to produce the following glare for receptors at this location:

- 494 minutes of "green" glare with low potential to cause temporary after-image.
- 0 minutes of "yellow" glare with potential to cause temporary after-image.







#### A3 - OP Receptor (OP 73)

No glare found

#### A3 - OP Receptor (OP 76)

No glare found

#### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections
  will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size.
  Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous
  point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass ε continuous, not discrete, spectrum.
- · Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.



### **GlareGauge Glare Analysis Results**

### Site Configuration: Array 4 OctMod

Project site configuration details and results.



Created Oct. 3, 2019 1 p.m.
Updated Oct. 3, 2019 1:03 p.m.
DNI varies and peaks at 1,000.0 W/m^2
Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31696.5043

# Summary of Results No glare predicted!

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| A4      | 25.0 | 180.0       | 0             | 0              | -               |

### **Component Data**

#### PV Array(s)

Slope error: 8.43 mrad

Name: A4
Axis tracking: Fixed (no rotation)
Tilt: 25.0 deg
Orientation: 180.0 deg
Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes



| Vertex | Latitude  | Longitude  | Ground elevation | Height above<br>ground | Total elevation |
|--------|-----------|------------|------------------|------------------------|-----------------|
|        | deg       | deg        | ft               | ft                     | ft              |
| 1      | 42.888771 | -74.163918 | 716.13           | 8.00                   | 724.13          |
| 2      | 42.890112 | -74.161322 | 711.28           | 8.00                   | 719.28          |
| 3      | 42.886731 | -74.158086 | 777.38           | 8.00                   | 785.38          |
| 4      | 42.886278 | -74.161988 | 741.64           | 8.00                   | 749.64          |
| 5      | 42.886885 | -74.162962 | 730.01           | 8.00                   | 738.01          |

#### **Discrete Observation Receptors**

| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 65  | 42.890889 | -74.159770 | 704.69           | 8.00                | 712.69          |

# **PV Array Results**

# **A4**

| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 65 | 0                 | 0                  |

#### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections
  will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size.
  Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous
  point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass ε continuous, not discrete, spectrum.
- · Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.



### **GlareGauge Glare Analysis Results**

### Site Configuration: Array 5 OctMod

Project site configuration details and results.



Created Oct. 3, 2019 4:42 p.m.
Updated Oct. 4, 2019 7:57 a.m.
DNI varies and peaks at 1,000.0 W/m^2
Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31709.5043

### Summary of Results Glare with potential for temporary after-image predicted

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| A5      | 25.0 | 180.0       | 0             | 7,080          | -               |

### **Component Data**

#### PV Array(s)

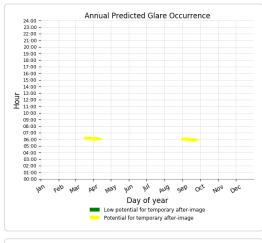
Name: A5
Axis tracking: Fixed (no rotation)
Tilt: 25.0 deg
Orientation: 180.0 deg
Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad

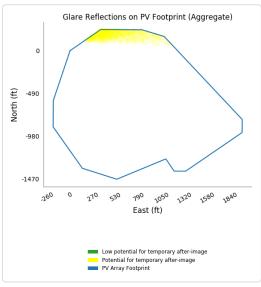


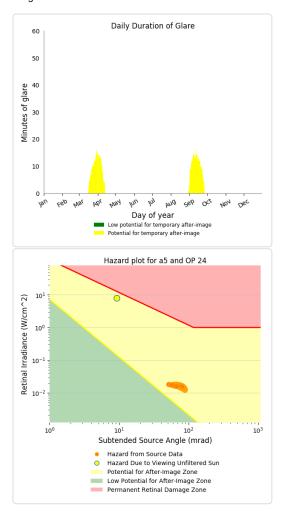
| Vertex | Latitude  | Longitude  | Ground elevation | Height above ground | Total<br>elevation |
|--------|-----------|------------|------------------|---------------------|--------------------|
|        | deg       | deg        | ft               | ft                  | ft                 |
| 1      | 42.889178 | -74.147575 | 818.86           | 8.00                | 826.86             |
| 2      | 42.889843 | -74.146265 | 787.34           | 8.00                | 795.34             |
| 3      | 42.889838 | -74.144498 | 796.06           | 8.00                | 804.06             |
| 4      | 42.889624 | -74.143544 | 803.44           | 8.00                | 811.44             |
| 5      | 42.887007 | -74.140208 | 920.86           | 8.00                | 928.86             |
| 6      | 42.886594 | -74.140210 | 926.95           | 8.00                | 934.95             |
| 7      | 42.885374 | -74.142628 | 912.08           | 8.00                | 920.08             |
| 8      | 42.885376 | -74.143120 | 909.18           | 8.00                | 917.18             |
| 9      | 42.885760 | -74.143476 | 902.24           | 8.00                | 910.24             |
| 10     | 42.885119 | -74.145577 | 896.33           | 8.00                | 904.33             |
| 11     | 42.885465 | -74.147049 | 887.69           | 8.00                | 895.69             |
| 12     | 42.886771 | -74.148300 | 870.20           | 8.00                | 878.20             |
| 13     | 42.887599 | -74.148296 | 857.62           | 8.00                | 865.62             |

### **Discrete Observation Receptors**

| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 24  | 42.889587 | -74.149577 | 803.12           | 16.00               | 819.12          |
| OP 28  | 42.889113 | -74.150335 | 815.53           | 16.00               | 831.53          |
| OP 29  | 42.888530 | -74.149500 | 829.82           | 16.00               | 845.82          |
| OP 72  | 42.889264 | -74.149082 | 812.51           | 8.00                | 820.51          |
| OP 76  | 42.890096 | -74.142190 | 830.22           | 8.00                | 838.22          |

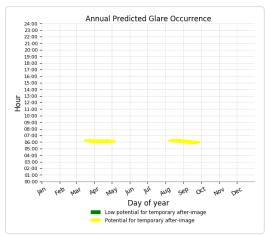

# **PV Array Results**

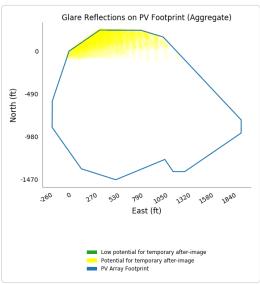

#### **A5** potential temporary after-image

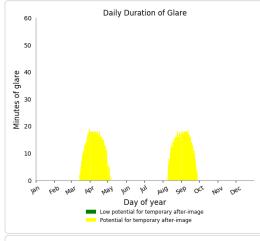

| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 24 | 0                 | 559                |
| OP: OP 28 | 0                 | 1404               |
| OP: OP 29 | 0                 | 4107               |
| OP: OP 72 | 0                 | 1010               |
| OP: OP 76 | 0                 | 0                  |

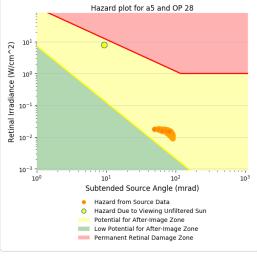
#### A5 - OP Receptor (OP 24)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 559 minutes of "yellow" glare with potential to cause temporary after-image.



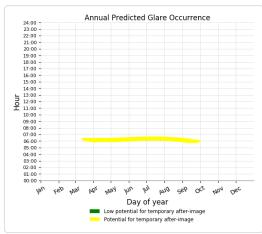



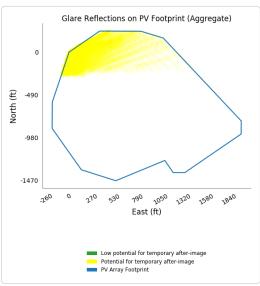



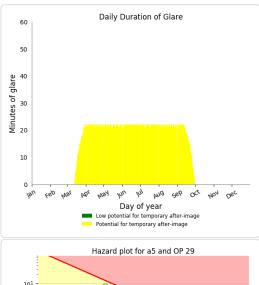


#### A5 - OP Receptor (OP 28)

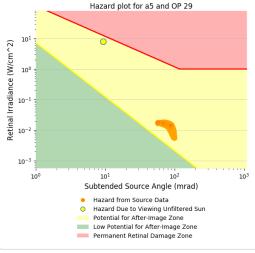
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 1,404 minutes of "yellow" glare with potential to cause temporary after-image.





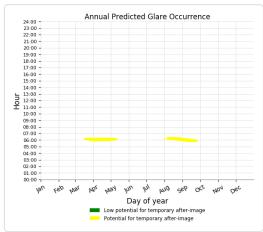



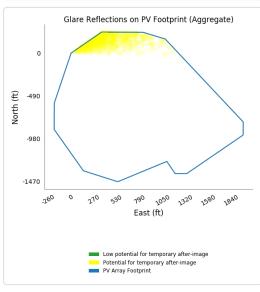


#### A5 - OP Receptor (OP 29)

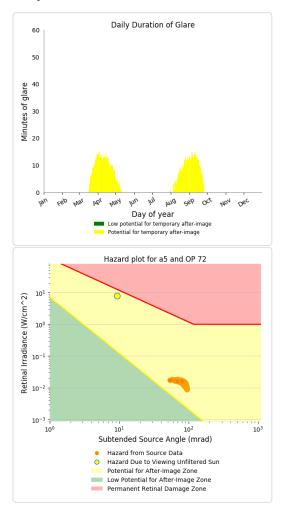
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 4,107 minutes of "yellow" glare with potential to cause temporary after-image.









#### A5 - OP Receptor (OP 72)

PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 1,010 minutes of "yellow" glare with potential to cause temporary after-image.







#### A5 - OP Receptor (OP 76)

No glare found

#### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass ε continuous, not discrete, spectrum.
- · Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.



### **GlareGauge Glare Analysis Results**

# Site Configuration: Array 6 OctMod

Project site configuration details and results.



Created Oct. 3, 2019 2:38 p.m.
Updated Oct. 3, 2019 2:50 p.m.

DNI varies and peaks at 1,000.0 W/m^2

Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31700.5043

### Summary of Results No glare predicted!

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| A6      | 25.0 | 180.0       | 0             | 0              | -               |

### **Component Data**

#### PV Array(s)

Name: A6
Axis tracking: Fixed (no rotation)
Tilt: 25.0 deg
Orientation: 180.0 deg
Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad



| Vertex | Latitude  | Longitude  | Ground elevation | Height above<br>ground | Total<br>elevation |
|--------|-----------|------------|------------------|------------------------|--------------------|
|        | deg       | deg        | ft               | ft                     | ft                 |
| 1      | 42.890591 | -74.136290 | 799.34           | 8.00                   | 807.34             |
| 2      | 42.892883 | -74.131755 | 687.39           | 8.00                   | 695.39             |
| 3      | 42.892878 | -74.130269 | 681.83           | 8.00                   | 689.83             |
| 4      | 42.891285 | -74.129407 | 728.63           | 8.00                   | 736.63             |
| 5      | 42.890877 | -74.129427 | 746.77           | 8.00                   | 754.77             |
| 6      | 42.890943 | -74.130302 | 749.59           | 8.00                   | 757.59             |
| 7      | 42.891124 | -74.132423 | 756.72           | 8.00                   | 764.72             |
| 8      | 42.889810 | -74.134827 | 818.28           | 8.00                   | 826.28             |
| 9      | 42.889812 | -74.135389 | 822.49           | 8.00                   | 830.49             |
| 9      | 42.889812 | -74.135389 | 822.49           | 8.00                   | 830.49             |

### **Discrete Observation Receptors**

| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 10  | 42.896538 | -74.135272 | 617.61           | 16.00               | 633.61          |
| OP 11  | 42.896899 | -74.134649 | 608.31           | 16.00               | 624.31          |
| OP 18  | 42.897823 | -74.133705 | 597.16           | 16.00               | 613.16          |
| OP 67  | 42.895682 | -74.121979 | 595.90           | 8.00                | 603.90          |
| OP 74  | 42.895349 | -74.135464 | 631.08           | 8.00                | 639.08          |

# **PV Array Results**

#### **A6**

| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 10 | 0                 | 0                  |
| OP: OP 11 | 0                 | 0                  |
| OP: OP 18 | 0                 | 0                  |
| OP: OP 67 | 0                 | 0                  |
| OP: OP 74 | 0                 | 0                  |

#### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections
  will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size.
  Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous
  point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass acontinuous, not discrete, spectrum.
- · Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.



### **GlareGauge Glare Analysis Results**

# Site Configuration: Array 7 OctMod

Project site configuration details and results.



Created Oct. 3, 2019 2:38 p.m.
Updated Oct. 3, 2019 2:59 p.m.
DNI varies and peaks at 1,000.0 W/m^2
Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31701.5043

### Summary of Results Glare with potential for temporary after-image predicted

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| A7      | 25.0 | 180.0       | 0             | 8,894          | -               |

### **Component Data**

PV Array(s)

**Warning:** This PV array encompasses a large surface area. This may reduce the accuracy of certain calculations if receptors are near the array. These calculations utilize the PV footprint centroid, rather than the glare-spot location, due to analysis method limitations. Additional analyses of array sub-sections may provide more information on expected glare. (Note that the subtended source angle is limited by the footprint surface area.)

×

Name: A7
Axis tracking: Fixed (no rotation)

Tilt: 25.0 deg
Orientation: 180.0 deg
Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

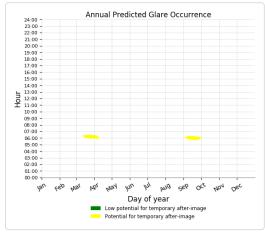


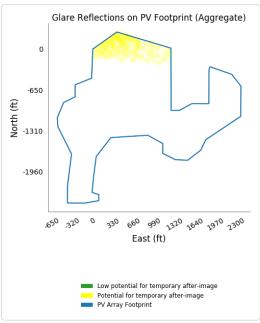
| Vertex | Latitude  | Longitude  | Ground elevation | Height above ground | Total<br>elevation |
|--------|-----------|------------|------------------|---------------------|--------------------|
|        | deg       | deg        | ft               | ft                  | ft                 |
| 1      | 42.895074 | -74.127174 | 620.63           | 8.00                | 628.63             |
| 2      | 42.895823 | -74.125737 | 598.74           | 8.00                | 606.74             |
| 3      | 42.895115 | -74.122504 | 607.26           | 8.00                | 615.26             |
| 4      | 42.892374 | -74.122494 | 672.66           | 8.00                | 680.66             |
| 5      | 42.892372 | -74.122002 | 667.04           | 8.00                | 675.04             |
| 6      | 42.892669 | -74.121255 | 659.17           | 8.00                | 667.17             |
| 7      | 42.892666 | -74.120241 | 663.70           | 8.00                | 671.70             |
| 8      | 42.894170 | -74.120232 | 618.15           | 8.00                | 626.15             |
| 9      | 42.894293 | -74.120164 | 616.27           | 8.00                | 624.27             |
| 10     | 42.893961 | -74.118871 | 629.08           | 8.00                | 637.08             |
| 11     | 42.893444 | -74.118321 | 644.59           | 8.00                | 652.59             |
| 12     | 42.892113 | -74.118329 | 680.21           | 8.00                | 688.21             |
| 13     | 42.891084 | -74.120422 | 727.68           | 8.00                | 735.68             |
| 14     | 42.890620 | -74.120725 | 747.82           | 8.00                | 755.82             |
| 15     | 42.890176 | -74.121507 | 757.67           | 8.00                | 765.67             |
| 16     | 42.890204 | -74.122244 | 765.61           | 8.00                | 773.61             |
| 17     | 42.890480 | -74.122992 | 769.32           | 8.00                | 777.32             |
| 18     | 42.890914 | -74.122989 | 751.84           | 8.00                | 759.84             |
| 19     | 42.891278 | -74.123894 | 742.96           | 8.00                | 750.96             |
| 20     | 42.891175 | -74.126096 | 765.30           | 8.00                | 773.30             |
| 21     | 42.890335 | -74.126974 | 796.68           | 8.00                | 804.68             |
| 22     | 42.889462 | -74.127125 | 814.21           | 8.00                | 822.21             |
| 23     | 42.888762 | -74.127221 | 844.24           | 8.00                | 852.24             |
| 24     | 42.888661 | -74.126813 | 854.48           | 8.00                | 862.49             |
| 25     | 42.888398 | -74.126815 | 869.15           | 8.00                | 877.15             |
| 26     | 42.888290 | -74.127649 | 848.42           | 8.00                | 856.42             |
| 27     | 42.888293 | -74.128692 | 835.31           | 8.00                | 843.31             |
| 28     | 42.889050 | -74.128688 | 809.53           | 8.00                | 817.53             |
| 29     | 42.890452 | -74.128446 | 755.31           | 8.00                | 763.31             |
| 30     | 42.891657 | -74.129262 | 714.57           | 8.00                | 722.57             |
| 31     | 42.892045 | -74.129297 | 703.08           | 8.00                | 711.08             |
| 32     | 42.892718 | -74.128924 | 687.51           | 8.00                | 695.51             |
| 33     | 42.892969 | -74.128233 | 680.97           | 8.00                | 688.97             |
| 34     | 42.893503 | -74.128230 | 673.69           | 8.00                | 681.69             |
| 35     | 42.893791 | -74.127244 | 669.56           | 8.00                | 677.56             |

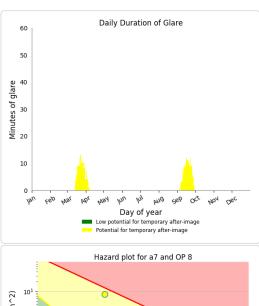
### **Discrete Observation Receptors**

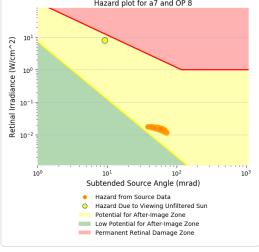
| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 8   | 42.895209 | -74.137643 | 652.44           | 16.00               | 668.44          |
| OP 9   | 42.895449 | -74.137219 | 645.32           | 16.00               | 661.32          |
| OP 10  | 42.896538 | -74.135272 | 617.61           | 16.00               | 633.61          |
| OP 11  | 42.896899 | -74.134649 | 608.31           | 16.00               | 624.31          |
| OP 16  | 42.900310 | -74.132858 | 535.30           | 16.00               | 551.30          |
| OP 18  | 42.897823 | -74.133705 | 597.16           | 16.00               | 613.16          |
| OP 33  | 42.895612 | -74.128218 | 603.88           | 16.00               | 619.88          |
| OP 34  | 42.896544 | -74.126614 | 578.00           | 16.00               | 594.00          |
| OP 40  | 42.894156 | -74.117976 | 629.29           | 16.00               | 645.29          |
| OP 41  | 42.895003 | -74.118754 | 615.39           | 16.00               | 631.39          |
| OP 42  | 42.894598 | -74.117405 | 624.89           | 16.00               | 640.89          |
| OP 43  | 42.893775 | -74.117145 | 644.10           | 16.00               | 660.10          |
| OP 44  | 42.889212 | -74.119802 | 856.47           | 16.00               | 872.47          |
| OP 51  | 42.899927 | -74.128083 | 496.16           | 16.00               | 512.16          |
| OP 52  | 42.900524 | -74.127042 | 491.12           | 16.00               | 507.12          |
| OP 67  | 42.895682 | -74.121979 | 595.90           | 8.00                | 603.90          |
| OP 68  | 42.894759 | -74.118727 | 613.34           | 8.00                | 621.34          |
| OP 69  | 42.896354 | -74.124360 | 587.02           | 8.00                | 595.02          |
| OP 70  | 42.897171 | -74.128255 | 549.05           | 8.00                | 557.05          |
| OP 74  | 42.895349 | -74.135464 | 631.08           | 8.00                | 639.08          |
| OP 75  | 42.896604 | -74.133350 | 593.73           | 8.00                | 601.73          |

# **PV Array Results**


### A7 potential temporary after-image


Warning: This PV array encompasses a large surface area. This may reduce the accuracy of certain calculations if receptors are near the array. These calculations utilize the PV footprint centroid, rather than the glare-spot location, due to analysis method limitations. Additional analyses of array sub-sections may provide more information on expected glare. (Note that the subtended source angle is limited by the footprint surface area.)

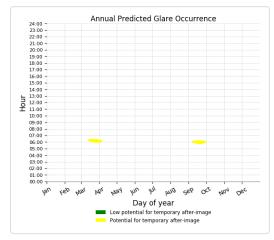

| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 8  | 0                 | 359                |
| OP: OP 9  | 0                 | 320                |
| OP: OP 10 | 0                 | 0                  |
| OP: OP 11 | 0                 | 0                  |
| OP: OP 16 | 0                 | 0                  |
| OP: OP 18 | 0                 | 0                  |
| OP: OP 33 | 0                 | 688                |
| OP: OP 34 | 0                 | 0                  |
| OP: OP 40 | 0                 | 1341               |
| OP: OP 41 | 0                 | 51                 |
| OP: OP 42 | 0                 | 348                |
| OP: OP 43 | 0                 | 1775               |
| OP: OP 44 | 0                 | 2973               |
| OP: OP 51 | 0                 | 0                  |
| OP: OP 52 | 0                 | 0                  |
| OP: OP 67 | 0                 | 15                 |
| OP: OP 68 | 0                 | 758                |
| OP: OP 69 | 0                 | 0                  |
| OP: OP 70 | 0                 | 0                  |
| OP: OP 74 | 0                 | 266                |
| OP: OP 75 | 0                 | 0                  |

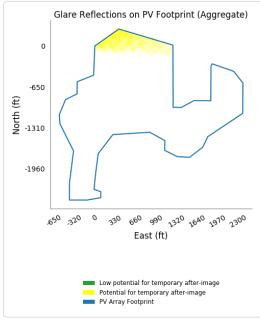

#### A7 - OP Receptor (OP 8)

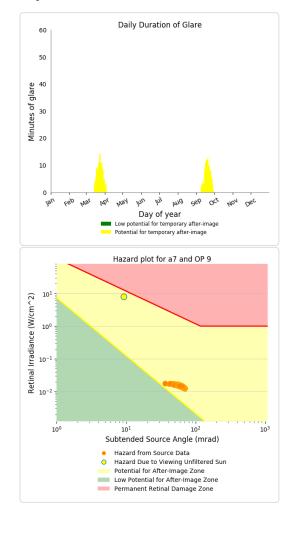
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 359 minutes of "yellow" glare with potential to cause temporary after-image.









#### A7 - OP Receptor (OP 9)

PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 320 minutes of "yellow" glare with potential to cause temporary after-image.







#### A7 - OP Receptor (OP 10)

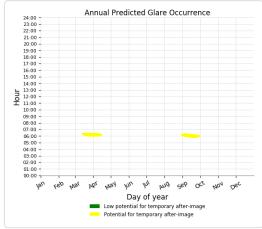
No glare found

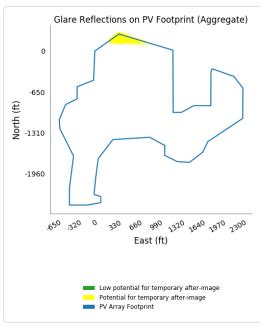
#### A7 - OP Receptor (OP 11)

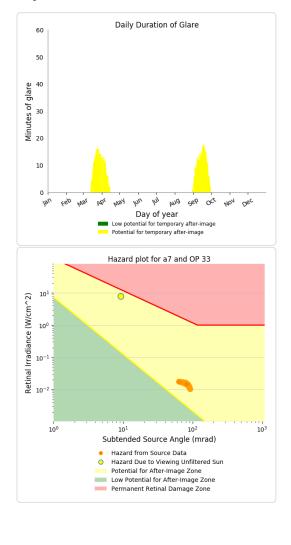
No glare found

#### A7 - OP Receptor (OP 16)

No glare found


#### A7 - OP Receptor (OP 18)


No glare found

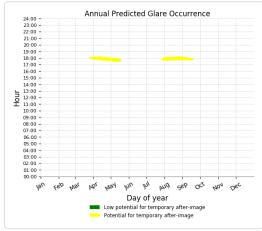

#### A7 - OP Receptor (OP 33)

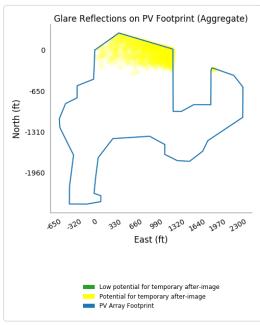
PV array is expected to produce the following glare for receptors at this location:

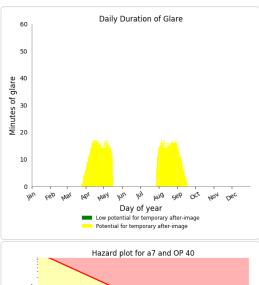
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 688 minutes of "yellow" glare with potential to cause temporary after-image.

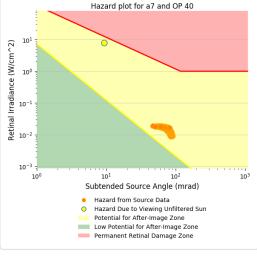






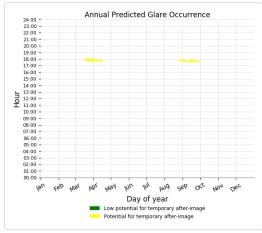


#### A7 - OP Receptor (OP 34)

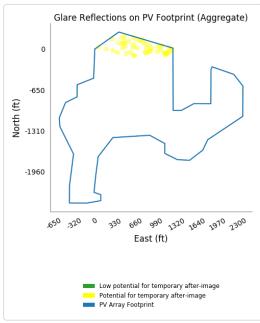

No glare found

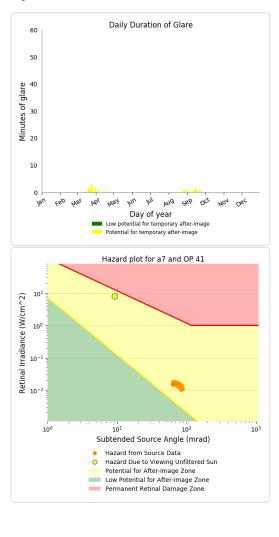

#### A7 - OP Receptor (OP 40)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 1,341 minutes of "yellow" glare with potential to cause temporary after-image.



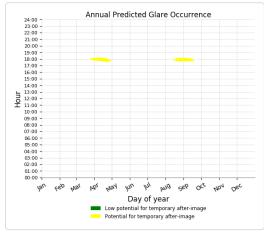


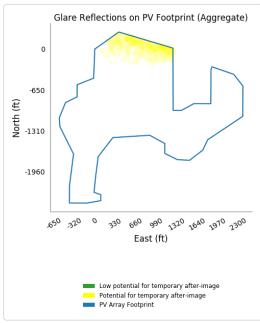



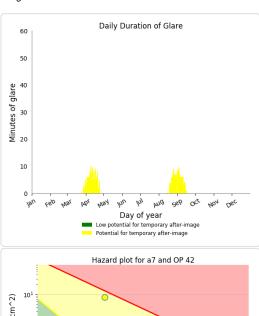



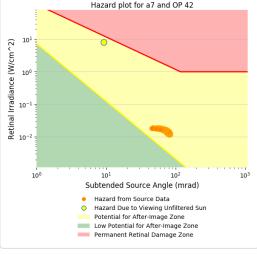

#### A7 - OP Receptor (OP 41)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 51 minutes of "yellow" glare with potential to cause temporary after-image.



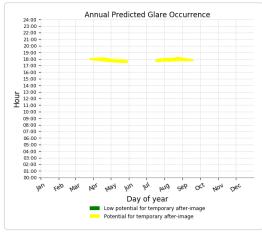



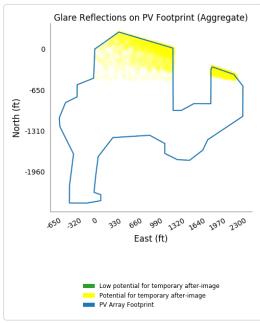



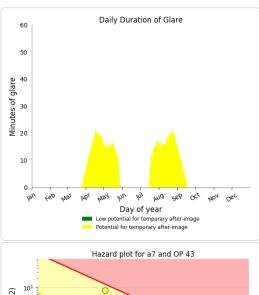


#### A7 - OP Receptor (OP 42)

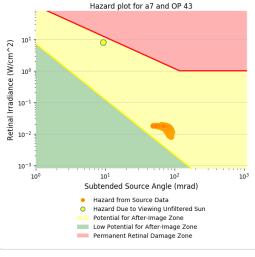
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 348 minutes of "yellow" glare with potential to cause temporary after-image.





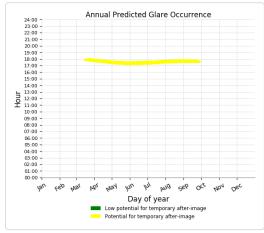



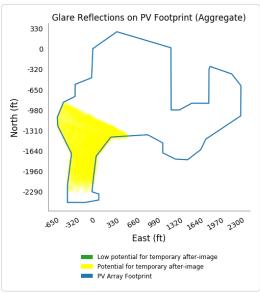


#### A7 - OP Receptor (OP 43)

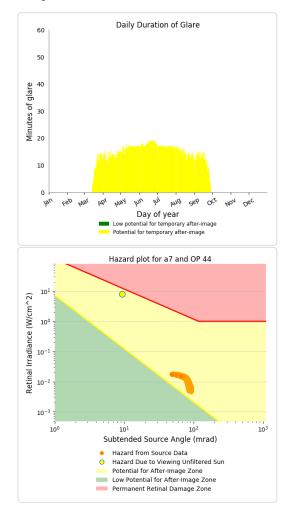
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 1,775 minutes of "yellow" glare with potential to cause temporary after-image.









#### A7 - OP Receptor (OP 44)

PV array is expected to produce the following glare for receptors at this location:

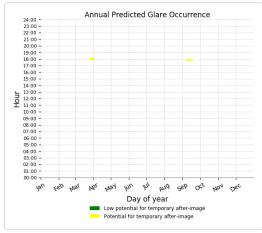
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,973 minutes of "yellow" glare with potential to cause temporary after-image.

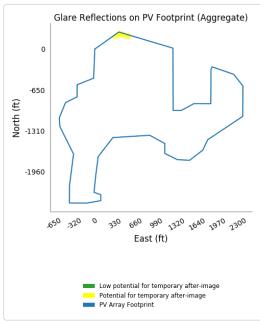


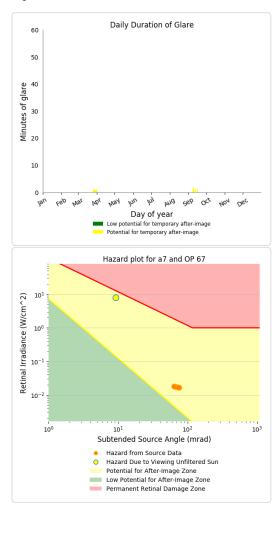




#### A7 - OP Receptor (OP 51)


No glare found

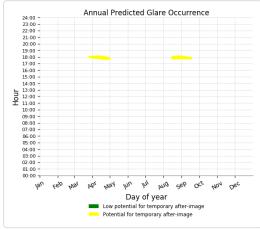

#### A7 - OP Receptor (OP 52)

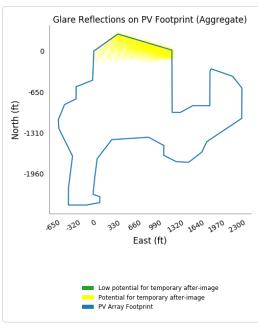

No glare found

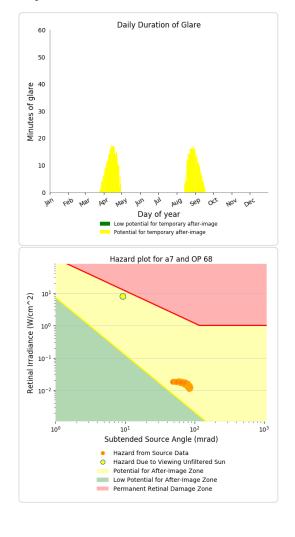
#### A7 - OP Receptor (OP 67)

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 15 minutes of "yellow" glare with potential to cause temporary after-image.







### A7 - OP Receptor (OP 68)

PV array is expected to produce the following glare for receptors at this location:

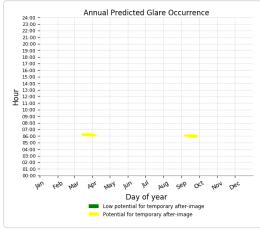
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 758 minutes of "yellow" glare with potential to cause temporary after-image.

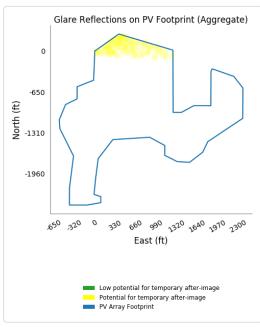


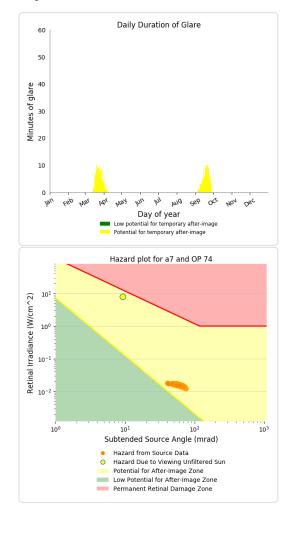




### A7 - OP Receptor (OP 69)


No glare found


### A7 - OP Receptor (OP 70)


### A7 - OP Receptor (OP 74)

PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 266 minutes of "yellow" glare with potential to cause temporary after-image.







### A7 - OP Receptor (OP 75)

### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections
  will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size.
  Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous
  point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass acontinuous, not discrete, spectrum.
- Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.



# **GlareGauge Glare Analysis Results**

# Site Configuration: Array P1 Fixed 9Oct19

Project site configuration details and results.



Created Oct. 9, 2019 1:14 p.m.
Updated Oct. 9, 2019 3:24 p.m.
DNI varies and peaks at 1,000.0 W/m^2
Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31863.5043

### Summary of Results Glare with potential for temporary after-image predicted

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| P1      | 25.0 | 180.0       | 0             | 9,002          | -               |

### **Component Data**

### PV Array(s)

Name: P1
Axis tracking: Fixed (no rotation)
Tilt: 25.0 deg
Orientation: 180.0 deg
Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad

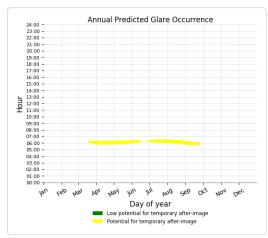


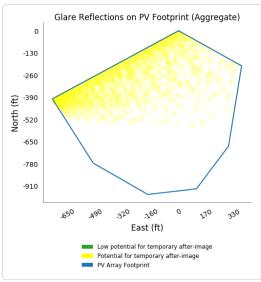
| Vertex | Latitude  | Longitude  | Ground elevation | Height above ground | Total<br>elevation |
|--------|-----------|------------|------------------|---------------------|--------------------|
|        | deg       | deg        | ft               | ft                  | ft                 |
| 1      | 42.902958 | -74.129574 | 463.80           | 10.00               | 473.80             |
| 2      | 42.902388 | -74.128186 | 459.74           | 10.00               | 469.74             |
| 3      | 42.901084 | -74.128473 | 477.41           | 10.00               | 487.41             |
| 4      | 42.900392 | -74.129181 | 494.62           | 10.00               | 504.62             |
| 5      | 42.900299 | -74.130252 | 508.85           | 10.00               | 518.85             |
| 6      | 42.900809 | -74.131456 | 512.78           | 10.00               | 522.79             |
| 7      | 42.901852 | -74.132355 | 505.32           | 10.00               | 515.32             |

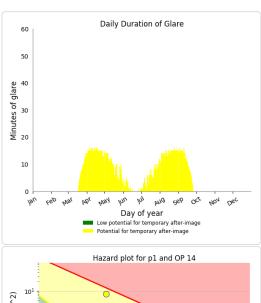
# **Discrete Observation Receptors**

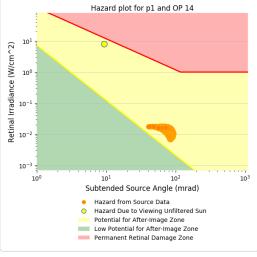
| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 14  | 42.901646 | -74.134145 | 520.67           | 16.00               | 536.67          |
| OP 15  | 42.900923 | -74.133373 | 528.45           | 16.00               | 544.45          |
| OP 16  | 42.900310 | -74.132858 | 535.30           | 16.00               | 551.30          |
| OP 17  | 42.899332 | -74.131956 | 546.18           | 16.00               | 562.18          |
| OP 34  | 42.896544 | -74.126614 | 578.00           | 16.00               | 594.00          |
| OP 44  | 42.889212 | -74.119802 | 856.47           | 16.00               | 872.47          |
| OP 51  | 42.899927 | -74.128083 | 496.16           | 16.00               | 512.16          |
| OP 62  | 42.903217 | -74.127914 | 453.09           | 8.00                | 461.09          |
| OP 71  | 42.900138 | -74.131913 | 532.75           | 8.00                | 540.75          |
| OP 76  | 42.890096 | -74.142190 | 830.22           | 8.00                | 838.22          |

# **PV Array Results**


### P1 potential temporary after-image


| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 14 | 0                 | 1826               |
| OP: OP 15 | 0                 | 868                |
| OP: OP 16 | 0                 | 2620               |
| OP: OP 17 | 0                 | 0                  |
| OP: OP 34 | 0                 | 0                  |
| OP: OP 44 | 0                 | 0                  |
| OP: OP 51 | 0                 | 2337               |
| OP: OP 62 | 0                 | 0                  |
| OP: OP 71 | 0                 | 1351               |
| OP: OP 76 | 0                 | 0                  |

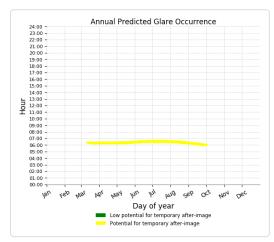

### P1 - OP Receptor (OP 14)

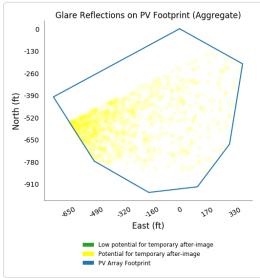

PV array is expected to produce the following glare for receptors at this location:

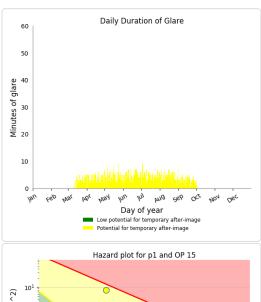
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 1,826 minutes of "yellow" glare with potential to cause temporary after-image.

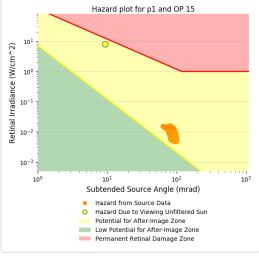






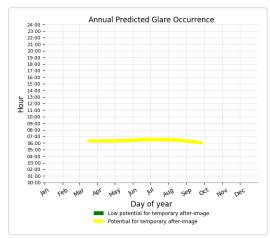


### P1 - OP Receptor (OP 15)

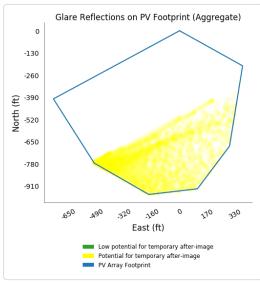

PV array is expected to produce the following glare for receptors at this location:

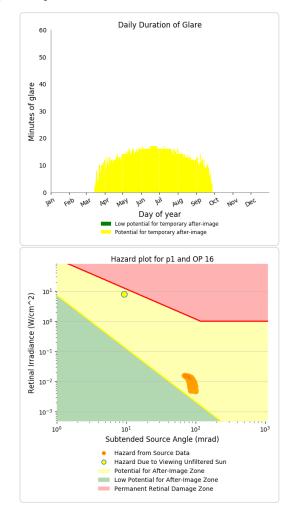
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 868 minutes of "yellow" glare with potential to cause temporary after-image.









### P1 - OP Receptor (OP 16)

PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,620 minutes of "yellow" glare with potential to cause temporary after-image.



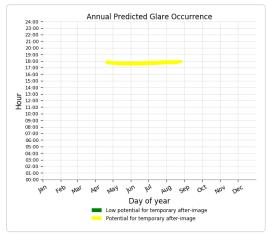


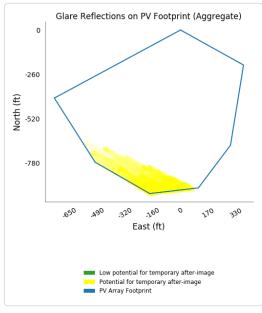


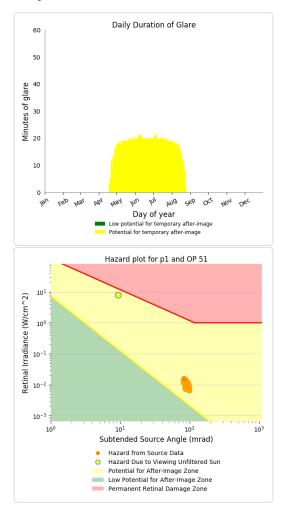
### P1 - OP Receptor (OP 17)

No glare found

#### P1 - OP Receptor (OP 34)


No glare found


### P1 - OP Receptor (OP 44)

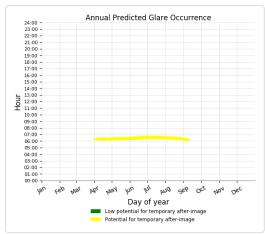

### P1 - OP Receptor (OP 51)

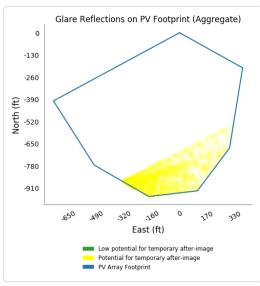
PV array is expected to produce the following glare for receptors at this location:

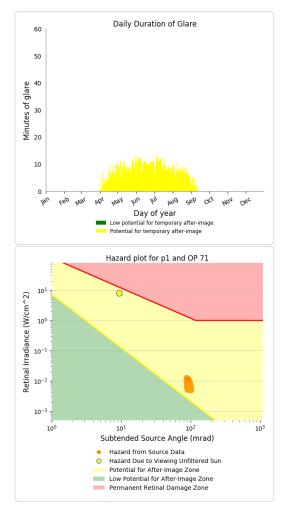
- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 2,337 minutes of "yellow" glare with potential to cause temporary after-image.









### P1 - OP Receptor (OP 62)


### P1 - OP Receptor (OP 71)

PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 1,351 minutes of "yellow" glare with potential to cause temporary after-image.







### P1 - OP Receptor (OP 76)

### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections
  will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size.
  Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous
  point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass acontinuous, not discrete, spectrum.
- · Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.



# **GlareGauge Glare Analysis Results**

# Site Configuration: Array P2 Fixed 9Oct19

Project site configuration details and results.



Created Oct. 9, 2019 1:14 p.m.
Updated Oct. 9, 2019 3:33 p.m.

DNI varies and peaks at 1,000.0 W/m^2
Analyze every 1 minute(s)
0.5 ocular transmission coefficient
0.002 m pupil diameter
0.017 m eye focal length
9.3 mrad sun subtended angle
Timezone UTC-5
Site Configuration ID: 31864.5043

### Summary of Results Glare with potential for temporary after-image predicted

| PV name | Tilt | Orientation | "Green" Glare | "Yellow" Glare | Energy Produced |
|---------|------|-------------|---------------|----------------|-----------------|
|         | deg  | deg         | min           | min            | kWh             |
| P2      | 25.0 | 180.0       | 1             | 3,557          | -               |

### **Component Data**

### PV Array(s)

Name: P2
Axis tracking: Fixed (no rotation)
Tilt: 25.0 deg
Orientation: 180.0 deg
Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad

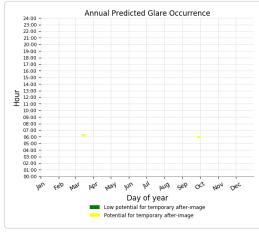


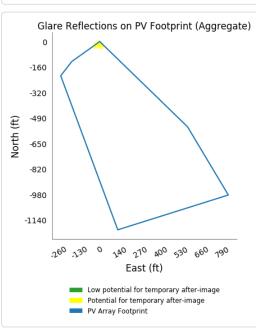
| Vertex | Latitude  | Longitude  | Ground elevation | Height above ground | Total<br>elevation |
|--------|-----------|------------|------------------|---------------------|--------------------|
|        | deg       | deg        | ft               | ft                  | ft                 |
| 1      | 42.901190 | -74.125707 | 475.14           | 10.00               | 485.14             |
| 2      | 42.899685 | -74.123603 | 502.59           | 10.00               | 512.59             |
| 3      | 42.898480 | -74.122625 | 529.15           | 10.00               | 539.15             |
| 4      | 42.897866 | -74.125275 | 553.18           | 10.00               | 563.18             |
| 5      | 42.900587 | -74.126642 | 490.68           | 10.00               | 500.68             |
| 6      | 42.900839 | -74.126375 | 483.09           | 10.00               | 493.09             |

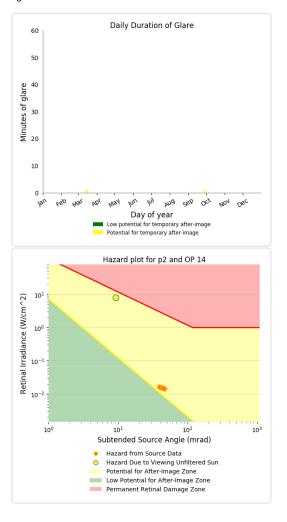
# **Discrete Observation Receptors**

| Number | Latitude  | Longitude  | Ground elevation | Height above ground | Total Elevation |
|--------|-----------|------------|------------------|---------------------|-----------------|
|        | deg       | deg        | ft               | ft                  | ft              |
| OP 14  | 42.901646 | -74.134145 | 520.67           | 16.00               | 536.67          |
| OP 15  | 42.900923 | -74.133373 | 528.45           | 16.00               | 544.45          |
| OP 33  | 42.895612 | -74.128218 | 603.88           | 16.00               | 619.88          |
| OP 51  | 42.899927 | -74.128083 | 496.16           | 16.00               | 512.16          |
| OP 63  | 42.902367 | -74.125263 | 458.61           | 8.00                | 466.62          |
| OP 76  | 42.890096 | -74.142190 | 830.22           | 8.00                | 838.22          |

# **PV Array Results**


#### **P2** potential temporary after-image

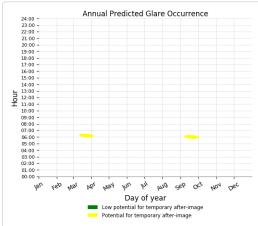

| Component | Green glare (min) | Yellow glare (min) |
|-----------|-------------------|--------------------|
| OP: OP 14 | 0                 | 7                  |
| OP: OP 15 | 1                 | 379                |
| OP: OP 33 | 0                 | 0                  |
| OP: OP 51 | 0                 | 3171               |
| OP: OP 63 | 0                 | 0                  |
| OP: OP 76 | 0                 | 0                  |

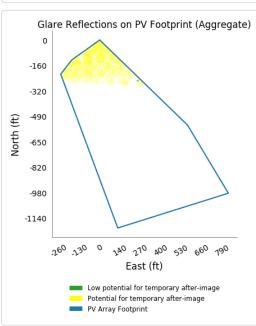

#### P2 - OP Receptor (OP 14)

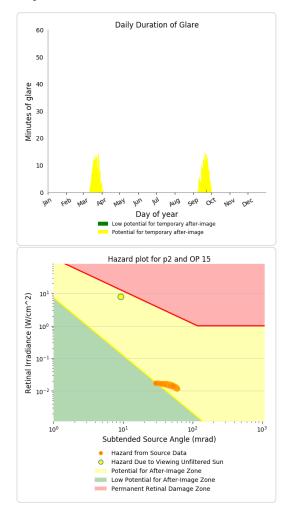
PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 7 minutes of "yellow" glare with potential to cause temporary after-image.





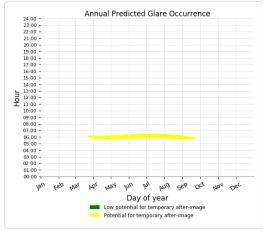


### P2 - OP Receptor (OP 15)

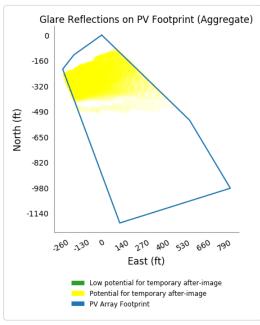
PV array is expected to produce the following glare for receptors at this location:

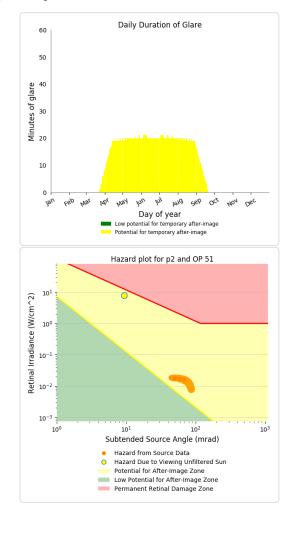
- 1 minutes of "green" glare with low potential to cause temporary after-image.
- 379 minutes of "yellow" glare with potential to cause temporary after-image.









### P2 - OP Receptor (OP 33)


### P2 - OP Receptor (OP 51)

PV array is expected to produce the following glare for receptors at this location:

- 0 minutes of "green" glare with low potential to cause temporary after-image.
- 3,171 minutes of "yellow" glare with potential to cause temporary after-image.







### P2 - OP Receptor (OP 63)

No glare found

### P2 - OP Receptor (OP 76)

### Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.
- Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary.
- Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass acontinuous, not discrete, spectrum.
- Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- · Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.
- · Refer to the Help page for assumptions and limitations not listed here.